Estimating the Integrated Likelihood via Posterior Simulation Using the Harmonic Mean Identity
نویسندگان
چکیده
The integrated likelihood (also called the marginal likelihood or the normalizing constant) is a central quantity in Bayesian model selection and model averaging. It is defined as the integral over the parameter space of the likelihood times the prior density. The Bayes factor for model comparison and Bayesian testing is a ratio of integrated likelihoods, and the model weights in Bayesian model averaging are proportional to the integrated likelihoods. We consider the estimation of the integrated likelihood from posterior simulation output, aiming at a generic method that uses only the likelihoods from the posterior simulation iterations. The key is the harmonic mean identity, which says that the reciprocal of the integrated likelihood is equal to the posterior harmonic mean of the likelihood. The simplest estimator based on the identity is thus the harmonic mean of the likelihoods. While this is an unbiased and simulation-consistent estimator, its reciprocal can have infinite variance and so it is unstable in general. We describe two methods for stabilizing the harmonic mean estimator. In the first one, the parameter space is reduced in such a way that the modified estimator involves a harmonic mean of heavier-tailed densities, thus resulting in a finite variance estimator. The resulting estimator is stable. It is also self-monitoring, since it obeys the central limit theorem, and so confidence intervals are available. We discuss general conditions under which this reduction is applicable. The second method is based on the fact that the posterior distribution of the log-likelihood is approximately a gamma distribution. This leads to an estimator of the maximum achievable likelihood, and also an estimator of the effective number of parameters that is extremely simple to compute from the loglikelihoods, independent of the model parametrization, and always positive. This yields estimates of the log integrated likelihood, and posterior simulation-based analogues of the BIC and AIC model selection criteria, called BICM and AICM. We illustrate the proposed methods through several examples. One of these is the selection of the dimension for the latent space social network model of Hoff, Raftery and Handcock (2002). When applied to the well-known monks’ social network data of Sampson (1968), our methods yield a surprising result: we find that the monks’ social network can be well represented by a latent space model with just one dimension.
منابع مشابه
Easy Estilnation of Nonnalizing Constants and Bayes Factors from Posterior Simulation : Stabilizing the Harmonic : Nlean Estimator
The Bayes factor is a useful summary for model selection. Calculation of this measure involves evaluating the integrated likelihood (or prior predictive density), which can be estimated from the output of MCMC and other posterior simulation methods using the harmonic mean estimator. vVhile this is a simulation-consistent estimator, it can have infinite variance. In this article we describe a me...
متن کاملEstimating Bayes factors via thermodynamic integration and population MCMC
A Bayesian approach to model comparison based on the integrated or marginal likelihood is considered, and applications to linear regression models and nonlinear ordinary differential equation (ODE) models are used as the setting in which to elucidate and further develop existing statistical methodology. The focus is on two methods of marginal likelihood estimation. First, a statistical failure ...
متن کاملSpecies delimitation using Bayes factors: simulations and application to the Sceloporus scalaris species group (Squamata: Phrynosomatidae).
Current molecular methods of species delimitation are limited by the types of species delimitation models and scenarios that can be tested. Bayes factors allow for more flexibility in testing non-nested species delimitation models and hypotheses of individual assignment to alternative lineages. Here, we examined the efficacy of Bayes factors in delimiting species through simulations and empiric...
متن کاملEstimating the Time of a Step Change in Gamma Regression Profiles Using MLE Approach
Sometimes the quality of a process or product is described by a functional relationship between a response variable and one or more explanatory variables referred to as profile. In most researches in this area the response variable is assumed to be normally distributed; however, occasionally in certain applications, the normality assumption is violated. In these cases the Generalized Linear Mod...
متن کاملEstimating Bayes Factors via Posterior Simulation with the Laplace-Metropolis Estimator
The key quantity needed for Bayesian hypothesis testing and model selection is the marginal likelihood for a model, also known as the integrated likelihood, or the marginal probability of the data. In this paper we describe a way to use posterior simulation output to estimate marginal likelihoods. We describe the basic Laplace-Metropolis estimator for models without random eeects. For models wi...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2006